Homepage
Localize site content
    • About
    • History
    • Who was Vera Rubin?
    • Construction Updates
      • Rubin in Chile
      • Cerro Pachón
      • Observatory Site Selection
      • Organization
      • Leadership
      • Science Collaborations
    • Funding Information
      • Work With Us
      • Jobs Board
    • Explore
      • How Rubin Works
      • Legacy Survey of Space and Time (LSST)
      • Rubin Technology
      • Alert Stream
      • Rubin Numbers
    • Science Goals
    • Rubin Voices
    • Get Involved in Rubin Research
      • Activities, Games, and More
      • Space Surveyors Game
      • Animated Video Series
      • Join Rubin Observatory’s 3200-Megapixel Group Photo!
    • Gallery
      • Main Gallery
    • Slideshows
    • Construction Archive Gallery
    • Media Use Policy
    • News
    • Press Releases
      • Rubin Observatory First Look
      • Rubin First Look Watch Parties
    • Media Resources
    • Press Releases
    • Name Guidelines
    • For Scientists
      • News, events, and deadlines
      • Rubin Science Assemblies
      • Rubin Data Academy
      • Rubin Community Workshop
      • Resources for scientists
      • Rubin Community Forum
      • Early Science Program
      • Workshops and seminars
      • Tutorials
      • LSST Discovery Alliance
      • Code of Conduct
      • Survey, instruments, and telescopes
      • Key numbers
      • The Legacy Survey of Space and Time (LSST)
      • Instruments
      • Telescopes
      • Data products, pipelines, and services
      • Data access and analysis
      • Recent data releases
      • Alerts and brokers
      • Data processing pipelines
      • Future data products
      • Data Policy
      • Simulation software
      • Documentation and publications
      • Technical documentation
      • How to cite Rubin Observatory
      • Publication policies
      • Glossary & Acronyms
      • Science Collaborations
      • Galaxies Science Collaboration
      • Stars, Milky Way, and Local Volume Science Collaboration
      • Solar System Science Collaboration
      • Dark Energy Science Collaboration
      • Active Galactic Nuclei Science Collaboration
      • Transients and Variable Stars Science Collaboration
      • Strong Lensing Science Collaboration
      • Informatics and Statistics Science Collaboration
    • Citizen Science
      • Committees and teams
      • Science Advisory Committee (SAC)
      • Survey Cadence Optimization Committee (SCOC)
      • Users Committee
      • Community Science Team (CST)
      • Research Inclusion Working Group (RIWG)
      • Project Science Team (PST)
    • Frequently Asked Questions
    • Education
    • Education FAQs
    • Educators
    • Glossary
    • Investigations
    • Calendar
Localize site content

Let's Connect

  • Visit the Rubin Observatory on Facebook
  • Visit the Rubin Observatory on Instagram
  • Visit the Rubin Observatory on LinkedIn
  • Visit the Rubin Observatory on Twitter
  • Visit the Rubin Observatory on YouTube
  • Jobs Board
  • Intranet
  • Visual Identity Guide
  • Image Gallery
  • Privacy Policy

Contact us

The U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science will support Rubin Observatory in its operations phase to carry out the Legacy Survey of Space and Time. They will also provide support for scientific research with the data. During operations, NSF funding is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF, and DOE funding is managed by SLAC National Accelerator Laboratory (SLAC), under contract by DOE. Rubin Observatory is operated by NSF NOIRLab and SLAC.

NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Funding agency logos
  1. Explore
  2. How Rubin Works
  3. Rubin Technology
  4. Camera
The LSST Camera, the largest camera ever built for astronomy. The camera opening is a large black ring with glass lenses, a bit smaller than a person is tall. In the center of the opening is the camera's focal plane detector, which is made of 189 square CCD chips arranged in a roughly square shape. The camera is suspended on a white metal frame with white handrails. A person in head to toe white clean room clothing shines a flashlight into the camera opening.

Camera

Highlights

  • The camera weighs about 3000 kg (6600 lbs). It’s roughly the size of a small car, but about twice as heavy.
  • It would take hundreds of ultra-high-definition TV screens to display a single image taken by this camera.
  • The camera’s sensors need to be kept extremely cold (about -100°C or -148°F) in order to limit the number of defective (bright) pixels in images.
  • The filters on the camera can be swapped in less than two minutes.

Rubin Observatory's LSST Camera is an impressive piece of equipment. The size of a small car, it's the largest digital camera ever built. Its sensor has a mind-boggling 3200 megapixels—roughly the same number of pixels as 260 modern cell phone sensors. While we certainly won't be taking selfies with the Rubin Observatory camera, we will use it to capture images of billions of far-away galaxies, as well as closer, faint objects that don't give off or reflect much light.

To produce an image of the night sky, Rubin Observatory's large mirrors first collect the light arriving from the cosmos. After bouncing through the mirrors, the light then gets focused by the camera's three lenses onto the image sensors. The camera's electronics convert the light into data, which is then transferred off the mountain and sent to different locations around the world to be processed and readied for science.

This complex and amazing camera was constructed at SLAC National Accelerator Laboratory in California, and it shipped to Chile in May 2024. It will be installed on the Simonyi Survey Telescope in early 2025.

Seeing the Universe in color

Color conveys a wide range of information. Yellow or orange tree leaves on a tree suggest that autumn has arrived, while green leaves suggest spring or summer. Green grass and plants imply plentiful water while brown plants may imply a lack of water. In a similar way, scientists use color in the cosmos to learn more or different information about the objects they study.

The image sensors in telescope cameras or in phones work by measuring the amount of light that hits each location (or pixel) and producing a greyscale image. Without any color filters, the image is brighter where more total light reached the sensor and darker where less total light reached the sensor, regardless of color. So with a red filter, for example, all colors except red light would be filtered out, and the resulting greyscale image would be brighter where there was more red light and darker where there was less red light.

When taking an image of the sky, the Rubin Observatory camera uses one of six different colored filters, labeled with the letters u, g, r, i, z, and y. Each filter lets through a range of colors—from the ultraviolet outside our range of vision (u), through our visible colors (g, r, i), and all the way outside our range of vision in the other direction into the infrared (i, z, y). In other words, telescope cameras have superhuman vision!

The filters themselves are pieces of glass that sit in front of the camera lenses, and they are housed in a carousel so they can be easily switched during observations. Each filter has its own special coating that lets its designated colors of light through while reflecting the other colors. Photographers with handheld cameras can easily attach different filters over their lenses manually, but the Rubin Observatory camera's filters are way too big (each one is 30 in/75 cm across) so we need a sophisticated machine to swap out the filters. This machine, called the auto-changer, can change the filters in less than two minutes.

Rubin Observatory's science goals require the six u, g, r, i, z, and y filters, but the filter carousel isn't able to hold all six filters at once—it's geometrically impossible! That means that on any given night, only five of the six filters can be used. The sixth filter is housed in a special storage stand, separate from the camera, and a device called the filter loader is used to exchange that filter, when it's needed, with one in the carousel (the goal is to limit handling of the filters by hand whenever possible, to reduce the risk of damage). The filter carousel and the filter loader make it easy to change the filter in front of the camera lens often, and that's important because collecting multiple images in all six filters, over 10 years, will provide scientists with a massive amount of information about the entire Southern Hemisphere sky.

Images of the Trifid Nebula were taken through three different filters and one combination of all three filters. The Rubin Observatory camera will work similarly, using one of six different colored filters and getting different information each time. Credit: T.A. Rector (University of Alaska Anchorage); Rubin Observatory/NSF/AURA.

Header image credit: Olivier Bonin/SLAC National Accelerator Laboratory