Let's Connect

  • Visit the Rubin Observatory on Facebook
  • Visit the Rubin Observatory on Instagram
  • Visit the Rubin Observatory on LinkedIn
  • Visit the Rubin Observatory on Twitter
  • Visit the Rubin Observatory on YouTube
  • Jobs Board
  • Intranet
  • Visual Identity Guide
  • Image Gallery
  • Privacy Policy

Contact us

The U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science will support Rubin Observatory in its operations phase to carry out the Legacy Survey of Space and Time. They will also provide support for scientific research with the data. During operations, NSF funding is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF, and DOE funding is managed by SLAC National Accelerator Laboratory (SLAC), under contract by DOE. Rubin Observatory is operated by NSF NOIRLab and SLAC.

NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Funding agency logos
  1. Main Gallery
  2. The effects of the Universe's large-scale structure on the light from distant galaxies
‌
    • About
    • History
    • Who was Vera Rubin?
    • Construction Updates
      • Rubin in Chile
      • Cerro Pachón
      • Observatory Site Selection
      • Organization
      • Leadership
      • Science Collaborations
    • Funding Information
      • Work With Us
      • Jobs Board
    • Explore
      • How Rubin Works
      • Legacy Survey of Space and Time (LSST)
      • Rubin Technology
      • Alert Stream
      • Rubin Numbers
    • Science Goals
    • Rubin Voices
    • Get Involved in Rubin Research
      • Activities, Games, and More
      • Space Surveyors Game
      • Animated Video Series
      • Join Rubin Observatory’s 3200-Megapixel Group Photo!
    • Gallery
      • Main Gallery
    • Slideshows
    • Construction Archive Gallery
    • Media Use Policy
    • News
    • Press Releases
      • Rubin Observatory First Look
      • Rubin First Look Watch Parties
    • Media Resources
    • Press Releases
    • Name Guidelines
    • For Scientists
      • News, events, and deadlines
      • Rubin Science Assemblies
      • Rubin Data Academy
      • Rubin Community Workshop
      • Resources for scientists
      • Rubin Community Forum
      • Early Science Program
      • Workshops and seminars
      • Tutorials
      • LSST Discovery Alliance
      • Code of Conduct
      • Survey, instruments, and telescopes
      • Key numbers
      • The Legacy Survey of Space and Time (LSST)
      • Instruments
      • Telescopes
      • Data products, pipelines, and services
      • Data access and analysis
      • Recent data releases
      • Alerts and brokers
      • Data processing pipelines
      • Future data products
      • Data Policy
      • Simulation software
      • Documentation and publications
      • Technical documentation
      • How to cite Rubin Observatory
      • Publication policies
      • Glossary & Acronyms
      • Science Collaborations
      • Galaxies Science Collaboration
      • Stars, Milky Way, and Local Volume Science Collaboration
      • Solar System Science Collaboration
      • Dark Energy Science Collaboration
      • Active Galactic Nuclei Science Collaboration
      • Transients and Variable Stars Science Collaboration
      • Strong Lensing Science Collaboration
      • Informatics and Statistics Science Collaboration
    • Citizen Science
      • Committees and teams
      • Science Advisory Committee (SAC)
      • Survey Cadence Optimization Committee (SCOC)
      • Users Committee
      • Community Science Team (CST)
      • Research Inclusion Working Group (RIWG)
      • Project Science Team (PST)
    • Frequently Asked Questions
    • Education
    • Education FAQs
    • Educators
    • Glossary
    • Investigations
    • Calendar
Localize site content
Localize site content
Homepage
Information about Usage of Rubin Observatory images, videos, web texts, and music

The effects of the Universe's large-scale structure on the light from distant galaxies

An illustration of the path that light from distant galaxies might take through the cosmic web. The background is a dark blue with criss-crossing light blue filaments made of tiny dots, resembling wisps of smoke or strings of a cobweb. Three bright teal squiggly lines spider out toward the right from three small illustrated galaxies slightly left of center, representing a squiggly path that light might take. The squiggly lines end at a pair of illustrated galaxies, one teal and one white. The teal version shows the true shape and position of the galaxy as it would have been seen without weak gravitational lensing effects. The white version represents the galaxy’s observed shape and position, slightly elongated and offset compared to the teal.‌
This illustration shows the bent paths of light from distant galaxies, caused by weak gravitational lensing from the Universe’s large-scale structure, or “cosmic web.” The galaxies’ true shapes become warped as the light travels and bends past the galaxies and galaxy clusters of the cosmic web. By the time the light is observed, the galaxies’ observed shapes and positions have changed (represented by the pairs of galaxies to the right). The effect is highly exaggerated in this illustration, and studies of weak lensing distortions used to measure how mass is distributed in the Universe typically require measurements of millions of galaxies. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will observe billions of galaxies and enable more precise weak lensing measurements than have been possible before.
Credit: Rubin Observatory/NSF/AURA/J. Pinto
Download image

About the image

Date created:
September 29, 2023
Size:
2160 × 1215 px
File size:
358.54KB

Available sizes

  • Thumbnail(100 × 56)
  • Small(240 × 135)
  • Small(320 × 180)
  • Medium(500 × 281)
  • Medium(640 × 360)
  • Medium(800 × 450)
  • Large(2050 × 1153)
  • Original(2160 × 1215)

Tags

  • #Illustration
  • #dark energy
  • #dark matter
  • #science release
  • #weak lensing